LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Migrating Epithelial Monolayer Flows Like a Maxwell Viscoelastic Liquid.

Photo by _louisreed from unsplash

We perform a bidimensional Stokes experiment in an active cellular material: an autonomously migrating monolayer of Madin-Darby canine kidney epithelial cells flows around a circular obstacle within a long and… Click to show full abstract

We perform a bidimensional Stokes experiment in an active cellular material: an autonomously migrating monolayer of Madin-Darby canine kidney epithelial cells flows around a circular obstacle within a long and narrow channel, involving an interplay between cell shape changes and neighbor rearrangements. Based on image analysis of tissue flow and coarse-grained cell anisotropy, we determine the tissue strain rate, cell deformation, and rearrangement rate fields, which are spatially heterogeneous. We find that the cell deformation and rearrangement rate fields correlate strongly, which is compatible with a Maxwell viscoelastic liquid behavior (and not with a Kelvin-Voigt viscoelastic solid behavior). The value of the associated relaxation time is measured as τ=70±15  min, is observed to be independent of obstacle size and division rate, and is increased by inhibiting myosin activity. In this experiment, the monolayer behaves as a flowing material with a Weissenberg number close to one which shows that both elastic and viscous effects can have comparable contributions in the process of collective cell migration.

Keywords: viscoelastic liquid; maxwell viscoelastic; monolayer; rate; cell

Journal Title: Physical review letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.