LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pattern Formation and Defect Ordering in Active Chiral Nematics.

Photo from wikipedia

Many biological systems display intriguing chiral patterns and dynamics. Here, we present an active nematic theory accounting for individual spin to explore the collective handedness in chiral rod-shaped aggregations. We… Click to show full abstract

Many biological systems display intriguing chiral patterns and dynamics. Here, we present an active nematic theory accounting for individual spin to explore the collective handedness in chiral rod-shaped aggregations. We show that coordinated individual spin and motility can engender a vortex-array pattern with chirality and drive ordering of topological defects. During this chiral process, the stationary trefoil-like defects self-organize into a periodic, hexagon-dominated polygonal network, which segregates persistently rotating cometlike defects in pairs within each polygon, leading to a translation symmetry at the global scale while a broken reflection symmetry at the local scale. Such defect ordering agrees exactly with the Voronoi tiling of two-dimensional space and the emergence of the hexagonal symmetry is deciphered in analogy with topological charge neutralization. We calculate energy barriers to the topological transition of the defect ordering and explain the existing metastable states with nonhexagonal polygons. Our findings shed light on the chiral morphodynamics in life processes and also suggest a potential route towards tuning self-organization in active materials.

Keywords: pattern formation; active chiral; formation defect; ordering active; defect; defect ordering

Journal Title: Physical review letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.