LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Localization on a Synthetic Hall Cylinder.

Photo from wikipedia

By engineering laser-atom interactions, both Hall ribbons and Hall cylinders as fundamental theoretical tools in condensed matter physics have recently been synthesized in laboratories. Here, we show that turning a… Click to show full abstract

By engineering laser-atom interactions, both Hall ribbons and Hall cylinders as fundamental theoretical tools in condensed matter physics have recently been synthesized in laboratories. Here, we show that turning a synthetic Hall ribbon into a synthetic Hall cylinder could naturally lead to localization. Unlike a Hall ribbon, a Hall cylinder hosts an intrinsic lattice, which arises due to the periodic boundary condition in the azimuthal direction, in addition to the external periodic potential imposed by extra lasers. When these two lattices are incommensurate, localization may occur on a synthetic Hall cylinder. Near the localization-delocalization transitions, physical observables strongly depend on the axial magnetic flux, providing us a sensitive means to probe either the transition or the axial flux using one another. In the irrational limit, physical observables are no longer affected by the axial flux, signifying a scheme to suppress decoherence induced by fluctuations of the axial flux.

Keywords: axial flux; hall; synthetic hall; hall cylinder; localization

Journal Title: Physical review letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.