LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mitigating the Sign Problem through Basis Rotations.

Photo by nate_dumlao from unsplash

Quantum Monte Carlo simulations of quantum many-body systems are plagued by the Fermion sign problem. The computational complexity of simulating Fermions scales exponentially in the projection time β and system size.… Click to show full abstract

Quantum Monte Carlo simulations of quantum many-body systems are plagued by the Fermion sign problem. The computational complexity of simulating Fermions scales exponentially in the projection time β and system size. The sign problem is basis dependent and an improved basis, for fixed errors, leads to exponentially quicker simulations. We show how to use sign-free quantum Monte Carlo simulations to optimize over the choice of basis on large two-dimensional systems. We numerically illustrate these techniques decreasing the "badness" of the sign problem by optimizing over single-particle basis rotations on one- and two-dimensional Hubbard systems. We find a generic rotation which improves the average sign of the Hubbard model for a wide range of U and densities for L×4 systems. In one example improvement, the average sign (and hence simulation cost at fixed accuracy) for the 16×4 Hubbard model at U/t=4 and n=0.75 increases by exp[8.64(6)β]. For typical projection times of β⪆100, this accelerates such simulation by many orders of magnitude.

Keywords: basis rotations; sign problem; basis; problem basis

Journal Title: Physical review letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.