LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Doubly Modulated Optical Lattice Clock: Interference and Topology.

Photo by des0519 from unsplash

The quantum system under periodical modulation is the simplest path to understand the quantum nonequilibrium system because it can be well described by the effective static Floquet Hamiltonian. Under the… Click to show full abstract

The quantum system under periodical modulation is the simplest path to understand the quantum nonequilibrium system because it can be well described by the effective static Floquet Hamiltonian. Under the stroboscopic measurement, the initial phase is usually irrelevant. However, if two uncorrelated parameters are modulated, their relative phase cannot be gauged out so that the physics can be dramatically changed. Here, we simultaneously modulate the frequency of the lattice laser and the Rabi frequency in an optical lattice clock (OLC) system. Thanks to the ultrahigh precision and ultrastability of the OLC, the relative phase could be fine-tuned. As a smoking gun, we observed the interference between two Floquet channels. Finally, by experimentally detecting the eigenenergies, we demonstrate the relation between the effective Floquet Hamiltonian and the one-dimensional topological insulator with a high winding number. Our experiment not only provides a direction for detecting the phase effect but also paves a way in simulating the quantum topological phase in the OLC platform.

Keywords: topology; phase; optical lattice; lattice clock

Journal Title: Physical review letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.