LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electric Probe for the Toric Code Phase in Kitaev Materials through the Hyperfine Interaction.

Photo by lucabravo from unsplash

The Kitaev model is a remarkable spin model with gapped and gapless spin liquid phases, which are potentially realized in iridates and α-RuCl_{3}. In the recent experiment of α-RuCl_{3}, the… Click to show full abstract

The Kitaev model is a remarkable spin model with gapped and gapless spin liquid phases, which are potentially realized in iridates and α-RuCl_{3}. In the recent experiment of α-RuCl_{3}, the signature of a nematic transition to the gapped toric code phase, which breaks the C_{3} symmetry of the system, has been observed through the angle dependence of the heat capacity. We here propose a mechanism by which the nematic transition can be detected electrically. This is seemingly impossible because J_{eff}=1/2 spins do not have an electric quadrupole moment (EQM). However, in the second-order perturbation, the virtual state with a nonzero EQM appears, which makes the nematic order parameter detectable by nuclear magnetic resonance and Mössbauer spectroscopy. The purely magnetic origin of the EQM is different from conventional electronic nematic phases, allowing the direct detection of the realization of Kitaev's toric error-correction code.

Keywords: toric code; code phase; kitaev; code; electric probe

Journal Title: Physical review letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.