In a recent breakthrough in first-principles calculations of two-electron systems, Patkóś, Yerokhin, and Pachucki [Phys. Rev. A 103, 042809 (2021)PLRAAN2469-992610.1103/PhysRevA.103.042809] have performed the first complete calculation of the Lamb shift… Click to show full abstract
In a recent breakthrough in first-principles calculations of two-electron systems, Patkóś, Yerokhin, and Pachucki [Phys. Rev. A 103, 042809 (2021)PLRAAN2469-992610.1103/PhysRevA.103.042809] have performed the first complete calculation of the Lamb shift of the helium 2 ^{3}S_{1} and 2 ^{3}P_{J} triplet states up to the term in α^{7}m. Whereas their theoretical result of the frequency of the 2 ^{3}P←2 ^{3}S transition perfectly agrees with the experimental value, a more than 10σ discrepancy was identified for the 3 ^{3}D←2 ^{3}S and 3 ^{3}D←2 ^{3}P transitions, which hinders the determination of the He^{2+} charge radius from atomic spectroscopy. We present here a new measurement of the ionization energy of the 2 ^{1}S_{0} state of He [960 332 040.491(32) MHz] which we use in combination with the 2 ^{3}S_{1}←2 ^{1}S_{0} interval measured by Rengelink et al. [Nat. Phys. 14, 1132 (2018).NPAHAX1745-247310.1038/s41567-018-0242-5] and the 2 ^{3}P←2 ^{3}S_{1} interval measured by Zheng et al. [Phys. Rev. Lett. 119, 263002 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.263002] and Cancio Pastor et al. [Phys. Rev. Lett. 92, 023001 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.023001] to derive experimental ionization energies of the 2 ^{3}S_{1} state [1152 842 742.640(32) MHz] and the 2 ^{3}P centroid energy [876 106 247.025(39) MHz]. These values reveal disagreements with the α^{7}m Lamb shift prediction by 6.5σ and 10σ, respectively, and support the suggestion by Patkóš et al. of an unknown theoretical contribution to the Lamb shifts of the 2 ^{3}S and 2 ^{3}P states of He.
               
Click one of the above tabs to view related content.