LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observation of Forward Neutron Multiplicity Dependence of Dimuon Acoplanarity in Ultraperipheral Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV.

Photo from wikipedia

The first measurement of the dependence of γγ→μ^{+}μ^{-} production on the multiplicity of neutrons emitted very close to the beam direction in ultraperipheral heavy ion collisions is reported. Data for… Click to show full abstract

The first measurement of the dependence of γγ→μ^{+}μ^{-} production on the multiplicity of neutrons emitted very close to the beam direction in ultraperipheral heavy ion collisions is reported. Data for lead-lead interactions at sqrt[s_{NN}]=5.02  TeV, with an integrated luminosity of approximately 1.5  nb^{-1}, are collected using the CMS detector at the LHC. The azimuthal correlations between the two muons in the invariant mass region 88.3. The back-to-back correlation structure from leading-order photon-photon scattering is found to be significantly broader for events with a larger number of emitted neutrons from each nucleus, corresponding to interactions with a smaller impact parameter. This observation provides a data-driven demonstration that the average transverse momentum of photons emitted from relativistic heavy ions has an impact parameter dependence. These results provide new constraints on models of photon-induced interactions in ultraperipheral collisions. They also provide a baseline to search for possible final-state effects on lepton pairs caused by traversing a quark-gluon plasma produced in hadronic heavy ion collisions.

Keywords: multiplicity; observation forward; forward neutron; sqrt tev; dependence; ultraperipheral collisions

Journal Title: Physical review letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.