LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physically Motivated Recursively Embedded Atom Neural Networks: Incorporating Local Completeness and Nonlocality.

Photo from wikipedia

Recent advances in machine-learned interatomic potentials largely benefit from the atomistic representation and locally invariant many-body descriptors. It was, however, recently argued that including three-body (or even four-body) features is… Click to show full abstract

Recent advances in machine-learned interatomic potentials largely benefit from the atomistic representation and locally invariant many-body descriptors. It was, however, recently argued that including three-body (or even four-body) features is incomplete to distinguish specific local structures. Utilizing an embedded density descriptor made by linear combinations of neighboring atomic orbitals and realizing that each orbital coefficient physically depends on its own local environment, we propose a recursively embedded atom neural network model. We formally prove that this model can efficiently incorporate complete many-body correlations without explicitly computing high-order terms. This model not only successfully addresses challenges regarding local completeness and nonlocality in representative systems, but also provides an easy and general way to update local many-body descriptors to have a message-passing form without changing their basic structures.

Keywords: atom neural; body; completeness nonlocality; embedded atom; recursively embedded; local completeness

Journal Title: Physical review letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.