The Berezinskii-Kosterlitz-Thouless (BKT) transition is the paradigmatic example of a topological phase transition without symmetry breaking, where a quasiordered phase, characterized by a power-law scaling of the correlation functions at… Click to show full abstract
The Berezinskii-Kosterlitz-Thouless (BKT) transition is the paradigmatic example of a topological phase transition without symmetry breaking, where a quasiordered phase, characterized by a power-law scaling of the correlation functions at low temperature, is disrupted by the proliferation of topological excitations above the critical temperature T_{BKT}. In this Letter, we consider the effect of long-range decaying couplings ∼r^{-2-σ} on the BKT transition. After pointing out the relevance of this nontrivial problem, we discuss the phase diagram, which is far richer than the corresponding short-range one. It features-for 7/4<σ<2-a quasiordered phase in a finite temperature range T_{c}
               
Click one of the above tabs to view related content.