A hologram fully encodes a three-dimensional light field by imprinting the interference between the field and a reference beam in a recording medium. Here we show that two collinear pump… Click to show full abstract
A hologram fully encodes a three-dimensional light field by imprinting the interference between the field and a reference beam in a recording medium. Here we show that two collinear pump lasers with different foci overlapped in a gas jet produce a holographic plasma lens capable of focusing or collimating a probe laser at intensities several orders-of-magnitude higher than the limits of a nonionized optic. We outline the theory of these diffractive plasma lenses and present simulations for two plasma mechanisms that allow their construction: spatially varying ionization and ponderomotively driven ion-density fluctuations. Damage-resistant plasma optics are necessary for manipulating high-intensity light, and divergence control of high-intensity pulses-provided by holographic plasma lenses-will be a critical component of high-power plasma-based lasers.
               
Click one of the above tabs to view related content.