We demonstrate the transient parity-time (PT) symmetry in electronics. It is revealed by equivalent circuit transformation according to the switching states of electronic systems. With the phasor method and Laplace… Click to show full abstract
We demonstrate the transient parity-time (PT) symmetry in electronics. It is revealed by equivalent circuit transformation according to the switching states of electronic systems. With the phasor method and Laplace transformation, we derive the hidden PT-symmetric Hamiltonian in the switching oscillation, which are characterized by free oscillation modes. Both spectral and dynamic properties of the PT electronic structure demonstrate the phase transition with eigenmode orthogonality. Importantly, the observed transient PT symmetry enables exceptional-point-induced optimal switching oscillation suppression, which shows the significance of PT symmetry in electronic systems with temporary responses. Our work paves the way for breakthroughs in the PT symmetry theory and has essential applications such as anti-interference in switch-mode electronics.
               
Click one of the above tabs to view related content.