Optically trapped mixed-species single atom arrays with arbitrary geometry are an attractive and promising platform for various applications, because tunable quantum systems with multiple components provide extra degrees of freedom… Click to show full abstract
Optically trapped mixed-species single atom arrays with arbitrary geometry are an attractive and promising platform for various applications, because tunable quantum systems with multiple components provide extra degrees of freedom for experimental control. Here, we report the first demonstration of two-dimensional 6×4 dual-species atom assembly of ^{85}Rb (^{87}Rb) atoms with a filling fraction of 0.88 (0.89). This mixed-species atomic synthesis is achieved via rearranging initially randomly distributed atoms by a sorting algorithm (heuristic heteronuclear algorithm) which is designed for bottom-up atom assembly with both user-defined geometries and two-species atom number ratios. Our fully tunable hybrid-atom systems with scalable advantages are a good starting point for high-fidelity quantum logic, many-body quantum simulation, and single molecule array formation.
               
Click one of the above tabs to view related content.