LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

g Factor of Lithiumlike Silicon and Calcium: Resolving the Disagreement between Theory and Experiment.

The bound-electron g factor is a stringent tool for tests of the standard model and the search for new physics. The comparison between an experiment on the g factor of… Click to show full abstract

The bound-electron g factor is a stringent tool for tests of the standard model and the search for new physics. The comparison between an experiment on the g factor of lithiumlike silicon and the two recent theoretical values revealed the discrepancies of 1.7σ [Glazov et al. Phys. Rev. Lett. 123, 173001 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.173001] and 5.2σ [Yerokhin et al. Phys. Rev. A 102, 022815 (2020)PLRAAN2469-992610.1103/PhysRevA.102.022815]. To identify the reason for this disagreement, we accomplish large-scale high-precision computation of the interelectronic-interaction and many-electron QED corrections. The calculations are performed within the extended Furry picture of QED, and the dependence of the final values on the choice of the binding potential is carefully analyzed. As a result, we significantly improve the agreement between the theory and experiment for the g factor of lithiumlike silicon. We also report the most accurate theoretical prediction to date for lithiumlike calcium, which perfectly agrees with the experimental value.

Keywords: factor lithiumlike; lithiumlike silicon; theory experiment; experiment factor

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.