The impact of coherent phonon excitations on the valence charge distribution in cubic boron nitride is mapped by femtosecond x-ray powder diffraction. Zone-edge transverse acoustic (TA) two-phonon excitations generated by… Click to show full abstract
The impact of coherent phonon excitations on the valence charge distribution in cubic boron nitride is mapped by femtosecond x-ray powder diffraction. Zone-edge transverse acoustic (TA) two-phonon excitations generated by an impulsive Raman process induce a steplike increase of diffracted x-ray intensity. Charge density maps derived from transient diffraction patterns reveal a spatial transfer of valence charge from the interstitial region onto boron and nitrogen atoms. This transfer is modulated with a frequency of 250 GHz due to a coherent superposition of TA phonons related to the ^{10}B and ^{11}B isotopes. Nuclear and electronic degrees of freedom couple through many-body Coulomb interactions.
               
Click one of the above tabs to view related content.