LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conservative and Radiative Dynamics of Spinning Bodies at Third Post-Minkowskian Order Using Worldline Quantum Field Theory.

Photo from wikipedia

Using the spinning worldline quantum field theory formalism we calculate the quadratic-in-spin momentum impulse Δp_{i}^{μ} and spin kick Δa_{i}^{μ} from a scattering of two arbitrarily oriented spinning massive bodies (black… Click to show full abstract

Using the spinning worldline quantum field theory formalism we calculate the quadratic-in-spin momentum impulse Δp_{i}^{μ} and spin kick Δa_{i}^{μ} from a scattering of two arbitrarily oriented spinning massive bodies (black holes or neutron stars) in a weak gravitational background up to third post-Minkowskian (PM) order (G^{3}). Two-loop Feynman integrals are performed in the potential region, yielding conservative results. For spins aligned to the orbital angular momentum we find a conservative scattering angle that is fully consistent with state-of-the-art post-Newtonian results. Using the 2PM radiated angular momentum previously obtained by Plefka, Steinhoff, and the present authors, we generalize the angle to include radiation-reaction effects, in which case it avoids divergences in the high-energy limit.

Keywords: worldline quantum; quantum field; post minkowskian; field theory; third post; post

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.