LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generally Applicable Holographic Torque Measurement for Optically Trapped Particles.

Photo from wikipedia

We present a method to measure the optical torque applied to particles of arbitrary shape such as micrometer-sized micro-organisms or cells held in an optical trap, inferred from the change… Click to show full abstract

We present a method to measure the optical torque applied to particles of arbitrary shape such as micrometer-sized micro-organisms or cells held in an optical trap, inferred from the change of angular momentum of light induced by the particle. All torque components can be determined from a single interference pattern recorded by a camera in the back focal plane of a high-NA condenser lens provided that most of the scattered light is collected. We derive explicit expressions mapping the measured complex field in this plane to the torque components. The required phase is retrieved by an iterative algorithm, using the known position of the optical traps as constraints. The torque pertaining to individual particles is accessible, as well as separate spin or orbital parts of the total torque.

Keywords: torque measurement; measurement optically; generally applicable; applicable holographic; holographic torque; torque

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.