Realization of novel topological phases in magnonic band structures represents a new opportunity for the development of spintronics and magnonics with low power consumption. In this work, we show that… Click to show full abstract
Realization of novel topological phases in magnonic band structures represents a new opportunity for the development of spintronics and magnonics with low power consumption. In this work, we show that in antiparallelly aligned magnetic multilayers, the long-range, chiral dipolar interaction between propagating magnons generates bulk bands with nonzero Chern integers and magnonic surface states carrying chiral spin currents. The surface states are highly localized and can be easily toggled between nontrivial and trivial phases through an external magnetic field. The realization of chiral surface spin currents in this dipolarly coupled heterostructure represents a magnonic implementation of the coupled wire model that has been extensively explored in electronic systems. Our work presents an easy-to-implement system for realizing topological magnonic surface states and low-dissipation spin current transport in a tunable manner.
               
Click one of the above tabs to view related content.