LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fourfold Anisotropic Magnetoresistance of L1_{0} FePt Due to Relaxation Time Anisotropy.

Photo from wikipedia

Experimental measurements show that the angular dependence of the anisotropic magnetoresistance (AMR) in L1_{0} ordered FePt epitaxial films on the current orientation and magnetization direction is a superposition of the… Click to show full abstract

Experimental measurements show that the angular dependence of the anisotropic magnetoresistance (AMR) in L1_{0} ordered FePt epitaxial films on the current orientation and magnetization direction is a superposition of the corresponding dependences of twofold and fourfold symmetries. The twofold AMR exhibits a strong dependence on the current orientation, whereas the fourfold term only depends on the magnetization direction in the crystal and is independent of the current orientation. First-principles calculations reveal that the fourfold AMR arises from the relaxation time anisotropy due to the variation of the density of states near the Fermi energy under rotation of the magnetization. This relaxation time anisotropy is a universal property in ferromagnetic metals and determines other anisotropic physical properties that are observable in experiment.

Keywords: relaxation time; time anisotropy; anisotropic magnetoresistance

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.