We probe local phase fluctuations of trapped two-dimensional Bose gases using matter-wave interferometry. This enables us to measure the phase correlation function, which changes from an algebraic to an exponential… Click to show full abstract
We probe local phase fluctuations of trapped two-dimensional Bose gases using matter-wave interferometry. This enables us to measure the phase correlation function, which changes from an algebraic to an exponential decay when the system crosses the Berezinskii-Kosterlitz-Thouless (BKT) transition. We determine the temperature dependence of the BKT exponent η and find the critical value η_{c}=0.17(3) for our trapped system. Furthermore, we measure the local vortex density as a function of the local phase-space density, which shows a scale-invariant behavior across the transition. Our experimental investigation is supported by Monte Carlo simulations and provides a comprehensive understanding of the BKT transition in a trapped system.
               
Click one of the above tabs to view related content.