While strain gradients break lattice centrosymmetry, ferromagnetism is a time-reversal symmetry breaking product. Flexomagnetic effect in ferromagnets is usually indirect and weak. In this Letter, we reveal a topologically enhanced… Click to show full abstract
While strain gradients break lattice centrosymmetry, ferromagnetism is a time-reversal symmetry breaking product. Flexomagnetic effect in ferromagnets is usually indirect and weak. In this Letter, we reveal a topologically enhanced flexomagnetic effect in synthetic antiferromagnetic systems based on Dzyaloshinskii-Moriya interaction and the large deformability of skyrmion. Moreover, the synthetic antiferromagnetic skyrmion exhibits an unexpected Hall effect under strain gradient. We propose that this flexo-Hall effect originates from a geometric Magnus force related to the asymmetric deformation of skyrmion. Our results shed new insights into the flexoresponses in systems hosting topological structures and may open up a new field-"flexoskyrmionics".
               
Click one of the above tabs to view related content.