LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexoresponses of Synthetic Antiferromagnetic Systems Hosting Skyrmions.

Photo from wikipedia

While strain gradients break lattice centrosymmetry, ferromagnetism is a time-reversal symmetry breaking product. Flexomagnetic effect in ferromagnets is usually indirect and weak. In this Letter, we reveal a topologically enhanced… Click to show full abstract

While strain gradients break lattice centrosymmetry, ferromagnetism is a time-reversal symmetry breaking product. Flexomagnetic effect in ferromagnets is usually indirect and weak. In this Letter, we reveal a topologically enhanced flexomagnetic effect in synthetic antiferromagnetic systems based on Dzyaloshinskii-Moriya interaction and the large deformability of skyrmion. Moreover, the synthetic antiferromagnetic skyrmion exhibits an unexpected Hall effect under strain gradient. We propose that this flexo-Hall effect originates from a geometric Magnus force related to the asymmetric deformation of skyrmion. Our results shed new insights into the flexoresponses in systems hosting topological structures and may open up a new field-"flexoskyrmionics".

Keywords: effect; systems hosting; synthetic antiferromagnetic; antiferromagnetic systems; flexoresponses synthetic; hosting skyrmions

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.