LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frequency-Dependent Squeezing from a Detuned Squeezer.

Photo by sharonmccutcheon from unsplash

Frequency-dependent squeezing is a promising technique to overcome the standard quantum limit in optomechanical force measurements, e.g., gravitational wave detectors. For the first time, we show that frequency-dependent squeezing can… Click to show full abstract

Frequency-dependent squeezing is a promising technique to overcome the standard quantum limit in optomechanical force measurements, e.g., gravitational wave detectors. For the first time, we show that frequency-dependent squeezing can be produced by detuning an optical parametric oscillator from resonance. Its frequency-dependent Wigner function is reconstructed quantum tomographically and exhibits a rotation by 39°, along which the noise is reduced by up to 5.5 dB. Our setup is suitable for realizing effective negative-mass oscillators required for coherent quantum noise cancellation.

Keywords: dependent squeezing; squeezing detuned; detuned squeezer; frequency dependent

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.