LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disordered Collective Motion in Dense Assemblies of Persistent Particles.

Photo by cassidykdickens from unsplash

We explore the emergence of nonequilibrium collective motion in disordered nonthermal active matter when persistent motion and crowding effects compete, using simulations of a two-dimensional model of size polydisperse self-propelled… Click to show full abstract

We explore the emergence of nonequilibrium collective motion in disordered nonthermal active matter when persistent motion and crowding effects compete, using simulations of a two-dimensional model of size polydisperse self-propelled particles. In stark contrast with monodisperse systems, we find that polydispersity stabilizes a homogeneous active liquid at arbitrary large persistence times, characterized by remarkable velocity correlations and irregular turbulent flows. For all persistence values, the active fluid undergoes a nonequilibrium glass transition at large density. This is accompanied by collective motion, whose nature evolves from near-equilibrium spatially heterogeneous dynamics at small persistence, to a qualitatively different intermittent dynamics when persistence is large. This latter regime involves a complex time evolution of the correlated displacement field.

Keywords: persistence; motion dense; motion; dense assemblies; disordered collective; collective motion

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.