LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin Noise in Birefringent Media.

Photo by tabithaturnervisuals from unsplash

It is known that linear birefringence of the medium essentially hinders measuring the Faraday effect. For this reason, optically anisotropic materials have never been considered as objects of the Faraday-rotation-based… Click to show full abstract

It is known that linear birefringence of the medium essentially hinders measuring the Faraday effect. For this reason, optically anisotropic materials have never been considered as objects of the Faraday-rotation-based spin noise spectroscopy. We show, both theoretically and experimentally, that strong optical anisotropy that may badly suppress the regular Faraday rotation of the medium, practically does not affect the measurement of the spatially uncorrelated spin fluctuations. We also show that the birefringent media provide additional opportunity to measure spatial spin correlations. Results of the experimental measurements of the spin-noise spectra performed on Nd^{3+} ions in the uniaxial crystal matrices well agree with the theory.

Keywords: spin noise; spectroscopy; noise birefringent; birefringent media

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.