LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamical Preparation of Quantum Spin Liquids in Rydberg Atom Arrays.

We theoretically analyze recent experiments [Semeghini et al., Science 374, 1242 (2021)SCIEAS0036-807510.1126/science.abi8794] demonstrating the onset of a topological spin liquid using a programmable quantum simulator based on Rydberg atom arrays. In… Click to show full abstract

We theoretically analyze recent experiments [Semeghini et al., Science 374, 1242 (2021)SCIEAS0036-807510.1126/science.abi8794] demonstrating the onset of a topological spin liquid using a programmable quantum simulator based on Rydberg atom arrays. In the experiment, robust signatures of topological order emerge in out-of-equilibrium states that are prepared using a quasiadiabatic state preparation protocol. We show theoretically that the state preparation protocol can be optimized to target the fixed point of the topological phase-the resonating valence bond state of hard dimers-in a time that scales linearly with the number of atoms. Moreover, we provide a two-parameter variational manifold of tensor network states that accurately describe the many-body dynamics of the preparation process. Using this approach we analyze the nature of the nonequilibrium state, establishing the emergence of topological order.

Keywords: state; quantum; atom arrays; preparation; rydberg atom; spin

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.