LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexoelectricity-Driven Mechanical Switching of Polarization in Metastable Ferroelectrics.

Photo by jentheodore from unsplash

Flexoelectricity-based mechanical switching of ferroelectric polarization has recently emerged as a fascinating alternative to conventional polarization switching using electric fields. Here, we demonstrate hyperefficient mechanical switching of polarization exploiting metastable… Click to show full abstract

Flexoelectricity-based mechanical switching of ferroelectric polarization has recently emerged as a fascinating alternative to conventional polarization switching using electric fields. Here, we demonstrate hyperefficient mechanical switching of polarization exploiting metastable ferroelectricity that inherently holds a unique mechanical response. We theoretically predict that mechanical forces markedly reduce the coercivity of metastable ferroelectricity, thus greatly bolstering flexoelectricity-driven mechanical polarization switching. As predicted, we experimentally confirm the mechanical polarization switching via an unusually low mechanical force (100 nN) in metastable ferroelectric CaTiO_{3}. Furthermore, the use of low mechanical forces narrows the width of mechanically writable nanodomains to sub-10 nm, suggesting an ultrahigh data storage density of ≥1  Tbit cm^{-2}. This Letter sheds light on the mechanical switching of ferroelectric polarization as a viable key element for next-generation efficient nanoelectronics and nanoelectromechanics.

Keywords: flexoelectricity driven; switching polarization; polarization; mechanical switching; driven mechanical

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.