LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast Suppression of the Ferroelectric Instability in KTaO_{3}.

Photo by yogidan2012 from unsplash

We use an x-ray free-electron laser to study the lattice dynamics following photoexcitation with ultrafast near-UV light (wavelength 266 nm, 50 fs pulse duration) of the incipient ferroelectric potassium tantalate, KTaO_{3}. By… Click to show full abstract

We use an x-ray free-electron laser to study the lattice dynamics following photoexcitation with ultrafast near-UV light (wavelength 266 nm, 50 fs pulse duration) of the incipient ferroelectric potassium tantalate, KTaO_{3}. By probing the lattice dynamics corresponding to multiple Brillouin zones through the x-ray diffuse scattering with pulses from the Linac Coherent Light Source (LCLS) (wavelength 1.3 Å and <10  fs pulse duration), we observe changes in the diffuse intensity associated with a hardening of the transverse acoustic phonon branches along Γ to X and Γ to M. Using force constants from density functional theory, we fit the quasiequilibrium intensity and obtain the instantaneous lattice temperature and density of photoexcited charge carriers. The density functional theory calculations demonstrate that photoexcitation transfers charge from oxygen 2p derived π-bonding orbitals to Ta 5d derived antibonding orbitals, further suppressing the ferroelectric instability and increasing the stability of the cubic, paraelectric structure.

Keywords: suppression ferroelectric; ktao; ferroelectric instability; ultrafast suppression; instability ktao

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.