We present a method for achieving high fidelity state preparation and measurement (SPAM) using trapped ion hyperfine qubits with nuclear spins higher than I=1/2. The ground states of these higher… Click to show full abstract
We present a method for achieving high fidelity state preparation and measurement (SPAM) using trapped ion hyperfine qubits with nuclear spins higher than I=1/2. The ground states of these higher nuclear spin isotopes do not afford a simple frequency-selective state preparation scheme. We circumvent this limitation by stroboscopically driving strong and weak transitions, blending fast optical pumping using dipole transitions, and narrow microwave or optical quadrupole transitions. We demonstrate this method with the I=3/2 isotope ^{137}Ba^{+} to achieve a SPAM infidelity of (9.0±1.3)×10^{-5} (-40.5±0.6 dB), facilitating the use of a wider range of ion isotopes with favorable wavelengths and masses for quantum computation.
               
Click one of the above tabs to view related content.