LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning the Functional Renormalization Group.

Photo from wikipedia

We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t-t^{'} Hubbard model on the square… Click to show full abstract

We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t-t^{'} Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.

Keywords: renormalization group; learning functional; deep learning; functional renormalization

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.