LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observation of Topological p-Orbital Disclination States in Non-Euclidean Acoustic Metamaterials.

Photo by yanahd from unsplash

Disclinations-topological defects ubiquitously existing in various materials-can reveal the intrinsic band topology of the hosting material through the bulk-disclination correspondence. In low-dimensional materials and nanostructure such as graphene and fullerenes,… Click to show full abstract

Disclinations-topological defects ubiquitously existing in various materials-can reveal the intrinsic band topology of the hosting material through the bulk-disclination correspondence. In low-dimensional materials and nanostructure such as graphene and fullerenes, disclinations yield curved surfaces and emergent non-Euclidean geometries that are crucial in understanding the properties of these materials. However, the bulk-disclination correspondence has never been studied in non-Euclidean geometry, nor in systems with p-orbital physics. Here, by creating p-orbital topological acoustic metamaterials with disclination-induced conic and hyperbolic surfaces, we demonstrate the rich emergent bound states arising from the interplay among the real-space geometry, the bulk band topology, and the p-orbital physics. This phenomenon is confirmed by clear experimental evidence that is consistent with theory and simulations. Our experiment paves the way toward topological phenomena in non-Euclidean geometries and will stimulate interesting research on, e.g., topological phenomena for electrons in nanomaterials with curved surfaces.

Keywords: topology; disclination; physics; acoustic metamaterials; geometry; non euclidean

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.