Microwave cavities have been deployed to search for bosonic dark matter candidates with masses of a few μeV. However, the sensitivity of these cavity detectors is limited by their volume,… Click to show full abstract
Microwave cavities have been deployed to search for bosonic dark matter candidates with masses of a few μeV. However, the sensitivity of these cavity detectors is limited by their volume, and the traditionally employed half-wavelength cavities suffer from a significant volume reduction at higher masses. Axion dark matter experiment (ADMX)-Orpheus mitigates this issue by operating a tunable, dielectrically loaded cavity at a higher-order mode, which allows the detection volume to remain large. The ADMX-Orpheus inaugural run excludes dark photon dark matter with kinetic mixing angle χ>10^{-13} between 65.5 μeV (15.8 GHz) and 69.3 μeV (16.8 GHz), marking the highest-frequency tunable microwave cavity dark matter search to date.
               
Click one of the above tabs to view related content.