LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relaxation to a Parity-Time Symmetric Generalized Gibbs Ensemble after a Quantum Quench in a Driven-Dissipative Kitaev Chain.

Photo by jontyson from unsplash

The construction of the generalized Gibbs ensemble, to which isolated integrable quantum many-body systems relax after a quantum quench, is based upon the principle of maximum entropy. In contrast, there… Click to show full abstract

The construction of the generalized Gibbs ensemble, to which isolated integrable quantum many-body systems relax after a quantum quench, is based upon the principle of maximum entropy. In contrast, there are no universal and model-independent laws that govern the relaxation dynamics and stationary states of open quantum systems, which are subjected to Markovian drive and dissipation. Yet, as we show, relaxation of driven-dissipative systems after a quantum quench can, in fact, be determined by a maximum entropy ensemble, if the Liouvillian that generates the dynamics of the system has parity-time symmetry. Focusing on the specific example of a driven-dissipative Kitaev chain, we show that, similar to isolated integrable systems, the approach to a parity-time symmetric generalized Gibbs ensemble becomes manifest in the relaxation of local observables and the dynamics of subsystem entropies. In contrast, the directional pumping of fermion parity, which is induced by nontrivial non-Hermitian topology of the Kitaev chain, represents a phenomenon that is unique to relaxation dynamics in driven-dissipative systems. Upon increasing the strength of dissipation, parity-time symmetry is broken at a finite critical value, which thus constitutes a sharp dynamical transition that delimits the applicability of the principle of maximum entropy. We show that these results, which we obtain for the specific example of the Kitaev chain, apply to broad classes of noninteracting fermionic models, and we discuss their generalization to a noninteracting bosonic model and an interacting spin chain.

Keywords: parity time; kitaev chain; driven dissipative; relaxation; chain

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.