LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bose-Einstein Condensation of Europium.

Photo from wikipedia

We report the realization of a Bose-Einstein condensate of europium atoms, which is a strongly dipolar species with unique properties, a highly symmetric [Xe]4f^{7}6s^{2} ^{8}S_{7/2} electronic ground state and a hyperfine… Click to show full abstract

We report the realization of a Bose-Einstein condensate of europium atoms, which is a strongly dipolar species with unique properties, a highly symmetric [Xe]4f^{7}6s^{2} ^{8}S_{7/2} electronic ground state and a hyperfine structure. By means of evaporative cooling in a crossed optical dipole trap, we produce a condensate of ^{151}Eu containing up to 5×10^{4} atoms. We estimate the scattering length of ^{151}Eu to be a_{s}=110(4)  a_{B} after comparing the velocities of expansion of condensates to different orientations of the atomic magnetic moments, where a_{B} is the Bohr radius. We observe deformation of the condensate in the vicinity of the Feshbach resonance at 1.32 G with a width of 10 mG.

Keywords: condensation europium; europium; bose einstein; condensate; einstein condensation

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.