LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modulated Rashba-Dresselhaus Spin-Orbit Coupling for Topology Control and Analog Simulations.

Photo from wikipedia

We show theoretically that Rashba-Dresselhaus spin-orbit coupling (RDSOC) in lattices acts as a synthetic gauge field. This allows us to control both the phase and the magnitude of tunneling coefficients… Click to show full abstract

We show theoretically that Rashba-Dresselhaus spin-orbit coupling (RDSOC) in lattices acts as a synthetic gauge field. This allows us to control both the phase and the magnitude of tunneling coefficients between sites, which is the key ingredient to implement topological Hamitonians and spin lattices useful for simulation perpectives. We use liquid crystal based microcavities in which RDSOC can be switched on and off as a model platform. We propose a realistic scheme for implementation of a Su-Schrieffer-Heeger chain in which the edge states existence can be tuned, and a Harper-Hofstadter model with a tunable contrasted flux for each (pseudo)spin component. We further show that a transverse-field Ising model and classical XY Hamiltonian with tunable parameters can be implemented, opening up prospects for analog physics, simulations, and optimization.

Keywords: topology; orbit coupling; rashba dresselhaus; spin orbit; spin; dresselhaus spin

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.