LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Charge-Noise-Induced Dephasing in Silicon Hole-Spin Qubits.

Photo from wikipedia

We investigate, theoretically, charge-noise-induced spin dephasing of a hole confined in a quasi-two-dimensional silicon quantum dot. Central to our treatment is accounting for higher-order corrections to the Luttinger Hamiltonian. Using… Click to show full abstract

We investigate, theoretically, charge-noise-induced spin dephasing of a hole confined in a quasi-two-dimensional silicon quantum dot. Central to our treatment is accounting for higher-order corrections to the Luttinger Hamiltonian. Using experimentally reported parameters, we find that the new terms give rise to sweet spots for the hole-spin dephasing, which are sensitive to device details: dot size and asymmetry, growth direction, and applied magnetic and electric fields. Furthermore, we estimate that the dephasing time at the sweet spots is boosted by several orders of magnitude, up to on the order of milliseconds.

Keywords: charge noise; noise induced; hole spin; induced dephasing

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.