Dynamically encircling an exceptional point in a non-Hermitian system can lead to chiral behaviors, but this process is difficult for on-chip PT-symmetric devices which require accurate control of gain and… Click to show full abstract
Dynamically encircling an exceptional point in a non-Hermitian system can lead to chiral behaviors, but this process is difficult for on-chip PT-symmetric devices which require accurate control of gain and loss rates. Here, we experimentally demonstrated encircling an exceptional point with a fixed loss rate in a compact anti-PT-symmetric integrated photonic system, where chiral mode switching was achieved within a length that is an order of magnitude shorter than that of a PT-symmetric system. Based on the experimental demonstration, we proposed a topologically protected mode (de)multiplexer that is robust against fabrication errors with a wide operating wavelength range. With the advantages of simplified fabrication and characterization processes, the demonstrated system can be used for studying higher-order exceptional points and for exotic light manipulation.
               
Click one of the above tabs to view related content.