LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Giant Density of States Enhancement Driven by a Zero-Mode Landau Level in Semimetallic Black Phosphorus under Pressure.

Photo from wikipedia

Dirac fermion systems form a unique Landau level at the Fermi level-the so-called zero mode-whose observation itself will provide strong evidence of the presence of Dirac dispersions. Here, we report… Click to show full abstract

Dirac fermion systems form a unique Landau level at the Fermi level-the so-called zero mode-whose observation itself will provide strong evidence of the presence of Dirac dispersions. Here, we report the study of semimetallic black phosphorus under pressure by ^{31}P-nuclear magnetic resonance measurements in a wide range of magnetic field up to 24.0 T. We have found a field-induced giant enhancement of 1/T_{1}T, where 1/T_{1} is the nuclear spin lattice relaxation rate: 1/T_{1}T at 24.0 T reaches more than 20 times larger than that at 2.0 T. The increase in 1/T_{1}T above 6.5 T is approximately proportional to the squared field, implying a linear relationship between the density of states and the field. We also found that, while 1/T_{1}T at a constant field is independent of temperature in the low-temperature region, it steeply increases with temperature above 100 K. All these phenomena are well explained by considering the effect of Landau quantization on three-dimensional Dirac fermions. The present study demonstrates that 1/T_{1} is an excellent quantity to probe the zero-mode Landau level and to identify the dimensionality of the Dirac fermion system.

Keywords: zero mode; landau level; semimetallic black; level; field

Journal Title: Physical review letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.