We report simultaneously acquired local and nonlocal transport spectroscopy in a phase-biased planar Josephson junction based on an epitaxial InAs-Al hybrid two-dimensional heterostructure. Quantum point contacts at the junction ends… Click to show full abstract
We report simultaneously acquired local and nonlocal transport spectroscopy in a phase-biased planar Josephson junction based on an epitaxial InAs-Al hybrid two-dimensional heterostructure. Quantum point contacts at the junction ends allow measurement of the 2×2 matrix of local and nonlocal tunneling conductances as a function of magnetic field along the junction, phase difference across the junction, and carrier density. A closing and reopening of a gap was observed in both the local and nonlocal tunneling spectra as a function of magnetic field. For particular tunings of junction density, gap reopenings were accompanied by zero-bias conductance peaks (ZBCPs) in local conductances. End-to-end correlation of gap reopening was strong, while correlation of local ZBCPs was weak. A model of the device, with disorder treated phenomenologically, shows comparable conductance matrix behavior associated with a topological phase transition. Phase dependence helps distinguish possible origins of the ZBCPs.
               
Click one of the above tabs to view related content.