LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Collisionless Accretion onto Black Holes: Dynamics and Flares.

Photo from wikipedia

We study the accretion of collisionless plasma onto a rotating black hole from first principles using axisymmetric general-relativistic particle-in-cell simulations. We carry out a side-by-side comparison of these results to… Click to show full abstract

We study the accretion of collisionless plasma onto a rotating black hole from first principles using axisymmetric general-relativistic particle-in-cell simulations. We carry out a side-by-side comparison of these results to analogous general-relativistic magnetohydrodynamic simulations. Although there are many similarities in the overall flow dynamics, three key differences between the kinetic and fluid simulations are identified. Magnetic reconnection is more efficient, and rapidly accelerates a nonthermal particle population, in our kinetic approach. In addition, the plasma in the kinetic simulations develops significant departures from thermal equilibrium, including pressure anisotropy that excites kinetic-scale instabilities, and a large field-aligned heat flux near the horizon that approaches the free-streaming value. We discuss the implications of our results for modeling event-horizon scale observations of Sgr A* and M87 by GRAVITY and the Event Horizon Telescope.

Keywords: accretion; holes dynamics; onto black; accretion onto; collisionless accretion; black holes

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.