LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pair-Density-Wave and Chiral Superconductivity in Twisted Bilayer Transition Metal Dichalcogenides.

Photo from wikipedia

We theoretically explore possible orders induced by weak repulsive interactions in twisted bilayer transition metal dichalcogenides (e.g., WSe_{2}) in the presence of an out-of-plane electric field. Using renormalization group analysis,… Click to show full abstract

We theoretically explore possible orders induced by weak repulsive interactions in twisted bilayer transition metal dichalcogenides (e.g., WSe_{2}) in the presence of an out-of-plane electric field. Using renormalization group analysis, we show that superconductivity survives even with the conventional van Hove singularities. We find that topological chiral superconducting states with Chern number N=1, 2, 4 (namely, p+ip, d+id, and g+ig) appear over a large parameter region with a moiré filling factor around n=1. At some special values of applied electric field and in the presence of a weak out-of-plane Zeeman field, spin-polarized pair-density-wave (PDW) superconductivity can emerge. This spin-polarized PDW state can be probed by experiments such as spin-polarized STM measuring spin-resolved pairing gap and quasiparticle interference. Moreover, the spin-polarized PDW could lead to a spin-polarized superconducting diode effect.

Keywords: spin polarized; bilayer transition; metal dichalcogenides; transition metal; superconductivity; twisted bilayer

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.