LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Realistic Protocol to Measure Entanglement at Finite Temperatures.

Photo from wikipedia

It is desirable to relate entanglement of many-body systems to measurable observables. In systems with a conserved charge, it was recently shown that the number entanglement entropy (NEE)-i.e., the entropy… Click to show full abstract

It is desirable to relate entanglement of many-body systems to measurable observables. In systems with a conserved charge, it was recently shown that the number entanglement entropy (NEE)-i.e., the entropy change due to an unselective subsystem charge measurement-is an entanglement monotone. Here we derive finite-temperature equilibrium relations between Rényi moments of the NEE, and multipoint charge correlations. These relations are exemplified in quantum dot systems where the desired charge correlations can be measured via a nearby quantum point contact. In quantum dots recently realizing the multichannel Kondo effect we show that the NEE has a nontrivial universal temperature dependence which is now accessible using the proposed methods.

Keywords: finite temperatures; entanglement finite; charge; protocol measure; realistic protocol; measure entanglement

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.