LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Sampling of Dynamical Large Deviations in Two Dimensions via Tensor Networks.

Photo by cosmicwriter from unsplash

We use projected entangled-pair states (PEPS) to calculate the large deviation statistics of the dynamical activity of the two-dimensional East model, and the two-dimensional symmetric simple exclusion process (SSEP) with… Click to show full abstract

We use projected entangled-pair states (PEPS) to calculate the large deviation statistics of the dynamical activity of the two-dimensional East model, and the two-dimensional symmetric simple exclusion process (SSEP) with open boundaries, in lattices of up to 40×40 sites. We show that at long times both models have phase transitions between active and inactive dynamical phases. For the 2D East model we find that this trajectory transition is of the first order, while for the SSEP we find indications of a second order transition. We then show how the PEPS can be used to implement a trajectory sampling scheme capable of directly accessing rare trajectories. We also discuss how the methods described here can be extended to study rare events at finite times.

Keywords: sampling dynamical; dynamical large; large deviations; deviations two; optimal sampling; two dimensions

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.