Strong measurements usually restrict the dynamics of measured finite dimensional systems to the Zeno subspace, where subsequent evolution is unitary due to the suppression of dissipative terms. Here, we show… Click to show full abstract
Strong measurements usually restrict the dynamics of measured finite dimensional systems to the Zeno subspace, where subsequent evolution is unitary due to the suppression of dissipative terms. Here, we show qualitatively different behavior induced by the competition between strong measurements and the thermodynamic limit, inducing a time-translation symmetry breaking phase transition resulting in a continuous time crystal. We consider an undriven spin star model, where the central spin is subject to a strong continuous measurement, and qualify the dynamic behavior of the system in various parameter regimes. We show that above a critical value of measurement strength, the magnetization of the thermodynamically large ancilla spins, along with the central spin, develops limit-cycle oscillations.
               
Click one of the above tabs to view related content.