LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonreciprocal Phonon Propagation in a Metallic Chiral Magnet.

The phonon magnetochiral effect (MChE) is the nonreciprocal acoustic and thermal transports of phonons caused by the simultaneous breaking of the mirror and time-reversal symmetries. So far, the phonon MChE… Click to show full abstract

The phonon magnetochiral effect (MChE) is the nonreciprocal acoustic and thermal transports of phonons caused by the simultaneous breaking of the mirror and time-reversal symmetries. So far, the phonon MChE has been observed only in a ferrimagnetic insulator Cu_{2}OSeO_{3}, where the nonreciprocal response disappears above the Curie temperature of 58 K. Here, we study the nonreciprocal acoustic properties of a room-temperature ferromagnet Co_{9}Zn_{9}Mn_{2} for unveiling the phonon MChE close to room temperature. Surprisingly, the nonreciprocity in this metallic compound is enhanced at higher temperatures and observed up to 250 K. This clear contrast between insulating Cu_{2}OSeO_{3} and metallic Co_{9}Zn_{9}Mn_{2} suggests that metallic magnets have a mechanism to enhance the nonreciprocity at higher temperatures. From the ultrasound and microwave-spectroscopy experiments, we conclude that the magnitude of the phonon MChE of Co_{9}Zn_{9}Mn_{2} mostly depends on the Gilbert damping, which increases at low temperatures and hinders the magnon-phonon hybridization. Our results suggest that the phonon nonreciprocity could be further enhanced by engineering the magnon band of materials.

Keywords: propagation metallic; phonon mche; phonon; metallic chiral; nonreciprocal phonon; phonon propagation

Journal Title: Physical review letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.