LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Work Extraction from Unknown Quantum Sources

Photo by lucabravo from unsplash

Energy extraction is a central task in thermodynamics. In quantum physics, ergotropy measures the amount of work extractable under cyclic Hamiltonian control. As its full extraction requires perfect knowledge of… Click to show full abstract

Energy extraction is a central task in thermodynamics. In quantum physics, ergotropy measures the amount of work extractable under cyclic Hamiltonian control. As its full extraction requires perfect knowledge of the initial state, however, it does not characterize the work value of unknown or untrusted quantum sources. Fully characterizing such sources would require quantum tomography, which is prohibitively costly in experiments due to the exponential growth of required measurements and operational limitations. Here, we therefore derive a new notion of ergotropy applicable when nothing is known about the quantum states produced by the source, apart from what can be learned by performing only a single type of coarse-grained measurement. We find that in this case the extracted work is defined by the Boltzmann and observational entropy, in cases where the measurement outcomes are, or are not, used in the work extraction, respectively. This notion of ergotropy represents a realistic measure of extractable work, which can be used as the relevant figure of merit to characterize a quantum battery.

Keywords: quantum; extraction; work extraction; quantum sources; extraction unknown

Journal Title: Physical Review Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.