LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Demonstration of Algorithmic Quantum Speedup

Photo by kommumikation from unsplash

Quantum algorithms theoretically outperform classical algorithms in solving problems of increasing size, but computational errors must be kept to a minimum to realize this potential. Despite the development of increasingly… Click to show full abstract

Quantum algorithms theoretically outperform classical algorithms in solving problems of increasing size, but computational errors must be kept to a minimum to realize this potential. Despite the development of increasingly capable quantum computers (QCs), an experimental demonstration of a provable algorithmic quantum speedup employing today's non-fault-tolerant, noisy intermediate-scale quantum (NISQ) devices has remained elusive. Here, we unequivocally demonstrate such a speedup, quantified in terms of the scaling with the problem size of the time-to-solution metric. We implement the single-shot Bernstein-Vazirani algorithm, which solves the problem of identifying a hidden bitstring that changes after every oracle query, utilizing two different 27-qubit IBM Quantum (IBMQ) superconducting processors. The speedup is observed on only one of the two QCs (ibmq_montreal) when the quantum computation is protected by dynamical decoupling (DD) -- a carefully designed sequence of pulses applied to the QC that suppresses its interaction with the environment, but not without DD. In contrast to recent quantum supremacy demonstrations, the quantum speedup reported here does not rely on any additional assumptions or complexity-theoretic conjectures and solves a bona fide computational problem, in the setting of a game with an oracle and a verifier.

Keywords: algorithmic quantum; demonstration algorithmic; quantum speedup; quantum

Journal Title: Physical Review Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.