LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mapping of local lattice parameter ratios by projective Kikuchi pattern matching

Photo by makcedward from unsplash

We describe a lattice-based crystallographic approximation for the analysis of distorted crystal structures via Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. EBSD patterns are closely linked to local… Click to show full abstract

We describe a lattice-based crystallographic approximation for the analysis of distorted crystal structures via Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. EBSD patterns are closely linked to local lattice parameter ratios via Kikuchi bands that indicate geometrical lattice plane projections. Based on the transformation properties of points and lines in the real projective plane, we can obtain continuous estimations of the local lattice distortion based on projectively transformed Kikuchi diffraction simulations for a reference structure. By quantitative image matching to a projective transformation model of the lattice distortion in the full solid angle of possible scattering directions, we enforce a crystallographically consistent approximation in the fitting procedure of distorted simulations to the experimentally observed diffraction patterns. As an application example, we map the locally varying tetragonality in martensite grains of steel.

Keywords: mapping local; local lattice; parameter ratios; lattice parameter; lattice

Journal Title: Physical Review Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.