We analyze the shape and position of heteroepitaxial InAs islands on the top face of cylindrical GaAs(111)A nanopillars experimentally and theoretically. Catalyst-free molecular beam epitaxial growth of InAs at low… Click to show full abstract
We analyze the shape and position of heteroepitaxial InAs islands on the top face of cylindrical GaAs(111)A nanopillars experimentally and theoretically. Catalyst-free molecular beam epitaxial growth of InAs at low temperatures on GaAs nanopillars results in InAs islands with diameters < 30 nm exhibiting predominantly rounded triangular in-plane shapes. The islands show a tendency to grow at positions displaced from the center towards the pillar edge. Atomistic molecular statics simulations evidence that triangular-prismatic islands centered to the pillar axis with diameters smaller than that of the nanopillars are energetically favored. Moreover, we reveal the existence of minimum-energy states for off-axis island positions, in agreement with the experiment. These findings are interpreted by evaluating the spatial strain distributions and the number of broken bonds of surface atoms as a measure for the surface energy. The preferred off-axis island positions can be understood in terms of an increased compliancy of the GaAs nanopillar beneath the island because of the vicinity of free surfaces, leading to a reduction of strain energy. The influence of surface steps on the energy of the system is addressed as well.
               
Click one of the above tabs to view related content.