LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and charge transport of amorphous Cu-doped Ta2O5 : An ab initio study

In this paper, we present ab initio computer models of Cu-doped amorphous Ta2O5 , a promising candidate for Conducting Bridge Random Access Memory (CBRAM) memory devices, and study the structural,… Click to show full abstract

In this paper, we present ab initio computer models of Cu-doped amorphous Ta2O5 , a promising candidate for Conducting Bridge Random Access Memory (CBRAM) memory devices, and study the structural, electronic, charge transport and vibrational properties based on plane-wave density functional methods. We offer an atomistic picture of the process of phase segregation/separation between Cu and Ta2O5 subnetworks. Electronic calculations show that the models are conducting with extended Kohn-Sham orbitals around the Fermi level. In addition to that, we also characterize the electronic transport using the Kubo-Greenwood formula modified suitably to calculate the space-projected conductivity (SPC). Our SPC calculations show that Cu clusters and under-coordinated Ta adjoining the Cu are the conduction-active parts of the network. We also report information about the dependence of the electrical conductivity on the connectivity of the Cu sub-matrix. Vibrational calculations for one of the models has been undertaken with an emphasis on localization and animation of representative modes.

Keywords: transport; charge transport; initio; ta2o5; structure charge

Journal Title: Physical Review Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.