LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel self-epitaxy for inducing superconductivity in the topological insulator (Bi1−xSbx)2Te3

Photo from wikipedia

Using the superconducting proximity effect for engineering a topological superconducting state in a topological insulator (TI) is a promising route to realize Majorana fermions. However, epitaxial growth of a superconductor… Click to show full abstract

Using the superconducting proximity effect for engineering a topological superconducting state in a topological insulator (TI) is a promising route to realize Majorana fermions. However, epitaxial growth of a superconductor on the TI surface to achieve a good proximity effect has been a challenge. We discovered that simply depositing Pd on thin films of the TI material (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ leads to an epitaxial self-formation of PdTe$_2$ superconductor having the superconducting transition temperature of ~1 K. This self-formed superconductor proximitizes the TI, which is confirmed by the appearance of a supercurrent in Josephson-junction devices made on (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$. This self-epitaxy phenomenon can be conveniently used for fabricating TI-based superconducting nanodevices to address the superconducting proximity effect in TIs.

Keywords: self epitaxy; proximity effect; topological insulator; novel self

Journal Title: Physical Review Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.